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Abstract 

In this paper, we apply the penalty function method to the multiobjective 
optimization problem, in order to transform a constrained problem, referred to as 
the original problem, into a sequence of simpler constrained or unconstrained 
problems, referred to as the penalized problems. We show that any cluster point  
of a sequence of weak efficient solutions of the penalized problems is a weak 
efficient solution of the original problem. Moreover, under certain assumptions on 
the feasible region D and the objective function f, we can show that every 
penalized problem has a weak efficient solution, and that a sequence of weak 
efficient solutions of the penalized problems always has at least one cluster point. 

1. Introduction 

The penalty function method is often employed to transform a 
constrained problem into a sequence of simpler constrained (or even 
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unconstrained) problems, so that a sequence of solutions of the simpler 
constrained problems converges to a solution of the constrained problem. 

There have been extensive studies on how to apply the penalty 
function method to the nonlinear optimization problem (see, for instance, 
[3, 4, 10, 14]). The penalty function method has been also employed to 
solve the multiobjective optimization problem (see [5, 6, 9, 13]). In [9], the 
weak efficient solutions of the multiobjective optimization problem 

( )f,MOP D  were studied, together with the exponential penalty 

functions. It was shown in [9] that if x is a cluster point of a sequence of 
weak efficient solutions of the penalized problems, and x is feasible (i.e., 

D∈x ), then x is a weak efficient solution of the original problem. The 
feasibility of x was assumed in [9]. We are here using the exterior penalty 
function, and are able to show the following: (1) if x is a cluster point of a 
sequence of weak efficient solutions of the penalized problems, then x is 
feasible; (2) such a point x is a weak efficient solution of the original 
problem; (3) under certain assumptions imposed on the objective function 
f, every penalized problem has a weak efficient solution, and every 
sequence of such weak efficient solutions has a cluster point, which in 
turn is a weak efficient solution of the original problem. 

The paper is organized as follows. Necessary definitions, notations, 
and some basis results on the multiobjective optimization problem are 
given in Section 2. Section 3 presents our main results. The paper is 
concluded in Section 4. 

2. Preliminaries 

For ( ) kT
kxx R∈= ,,1 …x  and ( ) ,,,1

kT
kyy R∈= …y  we adopt 

the following conventions: 

,,,1, kiyx ii …=∀<⇔< yx  

.: ii yxi ≥∃⇔</ yx  

Let y  denote the Euclidean norm of y, namely, 
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Let { ( ) }.,,1,0:,,1 kixxx i
kT

k
k …… =≥∈==+ RR x  Let D be a 

nonempty subset of .kR  We henceforth assume that D is closed and 
convex. We consider the following D-constrained multiobjective 
optimization problem 

( ) ( ) ( ( ) ( )),,,min:,MOP 1 xxxff
x rD

ffD …=
∈

 

where ,,,1,: rif k
i …=→ RR  are arbitrary functions on .kR  D is 

referred to as the feasible region of ( ).,MOP fD  If ,D∈x  then x is called 

a feasible point of ( ).,MOP fD  If ,kD R=  then ( )f,MOP D  is called an 

unconstrained multiobjective optimization problem. 

Definition 2.1. The point D∈x  is called a weak efficient solution of 
( ),,MOP fD  if there does not exist D∈y  satisfying ( ) ( ).xfyf <  

Thus, D∈x  is a weak efficient solution of ( ),,MOP fD  if and only if 

for all ,D∈y  there exists some index i such that 

( ) ( ).xfyf ii ≥  

Suppose that krk ×→ RR:F  is a mapping, whose range is a set of kr ×  
real matrices. The D-constrained vector variational inequality problem is 
defined as follows: 

( ) ( ) ( ) .,0thatsuchFind:,VVIP DDD ∈∀</−∈ yxyxFxF  
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If ,kD R=  then ( )F,VVIP D  is called an unconstrained vector 

variational inequality problem. Let rikk
i ,,1,: …=→ RRF  be the 

component functions of F, i.e., ( )xFi  is the i-th row of the matrix ( ).xF  

Then 

( ) ( ) ( ( ) ( ) ) .,,,,1
T

r xyxFxyxFxyxF −−=− …  

Therefore, D∈x  is a solution of ( ),,VVIP FD  if and only if for all 

,D∈y  

( ( ) ( ) ) ,0,,,,1 </−− T
r xyxFxyxF …  

or in other words, there exists some index i such that 

( ) .0, ≥− xyxFi  

The following theorem establishes the relationship between the weak 
efficient solutions of a multiobjective optimization problem and the 
solutions of the corresponding vector variation inequality problem, under 
the assumption on the convexity and differentiability of the objective 
function. 

Theorem 2.2 ([2]). Let f be convex and differentiable, i.e., each 
component if  of f is convex and differentiable. Then x is a weak efficient 

solution of ( ),,MOP fD  if and only if x is a solution of ( ),,VVIP f ′D  

where f ′  is the total derivative of f.  

The following results on the existence of solutions of a multiobjective 
optimization problem are useful for us later. 

Theorem 2.3 ([8]). Let f be convex and differentiable. Furthermore, 
suppose that D is unbounded and there exists D∈a  such that 

( ) .,,1,0,lim
,

rifiD
…=>−∇

∈+∞→
ayy

yy
 

Then ( )f,MOP D  has a weak efficient solution. 
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Definition 2.4 ([1]). The function krk ×→ RR:F  is said to be 

monotone on ,kR  if each of its components is monotone, i.e., ( ) −yFi  

( ) 0, ≥− xyxFi  for all .,,1 ri …=  

Theorem 2.5 ([1]). Let krk ×→ RR:F  be a continuous and 

monotone function on .kR  Assume that 

(1) D is bounded, or 

(2) F is weak coercive on D, namely, there exists a vector r
+∈ Rs  and a 

vector D∈a  such that 

( ) .,lim
,

+∞=−
∈+∞→

ayyFs
yy

T
D

 

Then ( )F,VVIP D  has a solution. 

Combining Theorems 2.2, 2.3, and 2.5, we deduce the following 
sufficient condition for the solvability of a multiobjective optimization 
problem. 

Corollary 2.6. Let f be convex and differentiable. Assume that one of 
the following holds: 

(1) D is bounded, 

(2) D is unbounded and there exists a vector r
+∈ Rs  and a vector 

D∈a  such that 

( ) ,,lim
1,

+∞=−∇∑
=

∈+∞→
ayy

yy ii

r

i
D

fs  

(3) D is unbounded and there exists a vector D∈a  such that 

( ) .,,1,0,lim
,

rifiD
…=>−∇

∈+∞→
ayy

yy
 

Then ( )f,MOP D  has a weak efficient solution. 
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Proof. Due to the convexity of ,if  it follows that if∇  is continuous 

and monotone (see, for instance, Corollary 25.5.1, [11]). Let 
krk ×→ RR:F  be the mapping with components .,,1, rifi …=∇  Then 

F is continuous and monotone. 

If D is bounded, by Theorem 2.5, ( )F,VVIP D  has a solution x. Using 
Theorem 2.2, we deduce that x is also a weak efficient solution of 

( ).,MOP fD  

Suppose that D is unbounded. If the second property holds, then F is 
weak coercive on D. Therefore, by Theorem 2.5, ( )F,VVIP D  has a 
solution x. Hence, again by Theorem 2.2, x is a weak efficient solution of 

( ).,MOP fD  If the third property holds, then by Theorem 2.3, 
( )f,MOP D  has a weak efficient solution.    

3. The Multiobjective Optimization Problem  
and the Penalty Functions 

Firstly, we define and study the penalized problems. 

3.1. The penalized problems 

Definition 3.1. Let D be a nonempty subset of .kR  A function 

RR →kP :  is called a penalty function for D, if it satisfies 

( )
( )




∈/>
∈=

.,0
,,0

DP
DP

xx
xx   (3.1) 

In this paper, we assume that P is chosen so that it is not only convex, 
but also differentiable. For instance, if D is defined as 

{ ( ) },,,1,0: mjgD j
k …=≤∈= xx R   (3.2) 

where mjg k
j ,,1,: …=→ RR  are continuous functions, we can take 

( ) [ { ( )}] .,0max 2

1
xx j

m

j
gP ∑

=

=   (3.3) 
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It is straightforward to verify that P defined as above not only is convex 

and differentiable on ,kR  but also satisfies (3.1). Note that it is well-
known that if P is convex, then 

( ) ( ) ( ),, xyxyx PPP −≤−∇  

for every x and y in .kR  

Now, fix a set .DK ⊃  For ,0>t  we define the following penalized 
problem 

( ( ) ) ( ) ( ( ) ( ) ),,,min:,MOP 1
t

r
tt

K
tK ffff

x
…=

∈
 

where ( ) .,,1, ritPff i
t

i …=+=  The region K can well be ,kR  and in 

such a case, the penalized problem has no constraint. Next, we study the 

existence of solutions of the penalized problem ( ( ) ).,MOP tK f  

Lemma 3.2. Let rk RR →:f  be convex and differentiable. 
Furthermore, assume that one of the following conditions holds: 

(1) K is bounded, 

(2) K is unbounded and there exists a vector r
+∈ Rs  and a vector 

D∈a  such that 

( ) ,,lim
1

,
+∞=−∇∑

=
∈+∞→

ayy
yy ii

r

i
K

fs  

(3) K is unbounded and there exists D∈a  such that 

( ) .,,1,0,lim
,

rifiK
…=>−∇

∈+∞→
ayy

yy
 

Then ( ( ) )tK f,MOP  has a weak efficient solution. 

Proof. It is clear that each ( ) tPff i
t

i +=  is convex and differentiable. 

If K is bounded, then by Corollary 2.6, ( ( ) )tK f,MOP  has a weak efficient 
solution. 
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Suppose that the second condition is satisfied. We have 

( )( ) ( ) ( ) ayyayyayy −∇+−∇=−∇ ∑∑∑
===

,,,
111

Pstfsfs i

r

i
ii

r

i

t
ii

r

i
 

( ) ( ) ( )( )ayayy PPtfs ii

r

i
−+−∇≥ ∑

=

,
1

 

( ) ayy −∇≥ ∑
=

,
1

ii

r

i
fs  

.,as, K∈+∞→+∞→ yy  

The second inequality is due to the fact that ( ) 0≥yP  and ( ) 0=aP  as 

.D∈a  Therefore, Corollary 2.6 implies that ( ( ) )tK f,MOP  has a weak 
efficient solution. 

Suppose that the third condition is satisfied. For each ,,,1 ri …=  we 
have 

( )( ) ( ) ( ) ayyayyayy −∇+−∇=−∇ ,,, Ptff i
t

i  

( ) ( ) ( )( )ayayy PPtfi −+−∇≥ ,  

( ) ., ayy −∇≥ if  

Therefore, 

( )( ) .0,lim
,

>−∇
∈+∞→

ayy
yy

t
iK

f  

Again by Corollary 2.6, we conclude that ( ( ) )tK f,MOP  has a weak 
efficient solution.   

3.2. The convergence theorems 

Let S and ( )tS  denote the solution sets of ( )f,MOP D  and MOP  

( ( ) ),, tK f  respectively. Let { }nnt  be a sequence of positive real numbers, 

which monotonically tends to +∞  as .+∞→n  
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Lemma 3.3. Assume that f is continuous, and that ( ) ( )n
n tS∈x  for 

all .N∈n  Suppose that x is a cluster point of ( ){ } .n
nx  Then .D∈x  

Proof. We prove this lemma by contradiction. Suppose that x is the 

limit of a subsequence ( ){ }mnmx  of ( ){ } ,n
nx  and that .D∈/x  Then 

( ) 0>xP  and hence ( ) ε>xP  for some .0>ε  Take .D∈y  Since ( )mnx  
( ),mntS∈  there exists mni  such that 

( )( ) ( )( ( ) ).mmn

mn
mn

mn
nt

i
t

i ff xy ≥  

Since { },,,2,1 ri mn …∈  there exists an infinite sequence { }AAmni  of 

indices, all of which have the same value, say ,1=
Amni  for all .N∈A  To 

simplify the notation, we assume that 1=mni  for all .N∈m  Therefore, 

for all ,N∈m  we have 

( )( ) ( )( ( ) ).11
mmnmn ntt ff xy ≥   (3.4) 

Since ( ( ) ) ( ) ,ε>→ xx PP mn  for all m sufficiently large, we have 

( ( ) ) .ε>mnP x  Hence, for m sufficiently large, 

( )( ( ) ) ( )( ) ( ( ) ) ( ) ( ( ( ) ) ( ))yxyxyx PPtffff m
m

mmnmmn n
n

ntnt
−+−=− 1111  

( ( ) ) ( ) ε+−≥ m
m n

n tff yx 11  

( ) ( ) .as,11 +∞→+∞=∞+−→ mff yx  

This contradicts (3.4). Note that here ( ) 0=yP  as .D∈y    

The following theorem shows that if a sequence of weak efficient 
solutions of the penalized problems converges to a point x, then x is also a 
weak efficient solution of the original problem. Note that if there exists 

some N∈n  such that ( ) ( ) ,DtS n
n ∩∈x  then it is easy to verify that 

( )nx  is also a solution of ( ).,MOP fD  
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Theorem 3.4. Assume that f is continuous, and that ( ) ( )n
n tS∈x  for 

all .N∈n  Then any cluster point of the sequence ( ){ }nnx  is a weak 

efficient solution of ( ).,MOP fD  

Proof. We assume that x is a cluster point of the sequence ( ){ } .n
nx  

Let ( ){ }mnmx  be a subsequence of ( ){ } ,n
nx  which converges to x. By 

Lemma 3.3, we already have .D∈x  

Suppose for contradiction that .S∈/x  Then, there exists D∈y  
satisfying 

( ) ( ) .,,1, riff ii …=< xy  

Since ( ) ( ),m
m n

n tS∈x  there exists mni  such that 

( )( ) ( )( ( ) ).mmn

mn
mn

mn
nt

i
t

i ff xy ≥  

Since { },,,2,1 ri mn …∈  there exists an infinite sequence { }AAmni  of 

indices, all of which have the same value, say ,1=
Amni  for all .N∈A  

Again, to simplify the notation, we assume that the sequence { }
mnmi  

itself satisfies this property, namely, ,1=mni  for all .N∈m  Therefore, 

for all ,N∈m  we have 

( )( ) ( )( ( ) ).11
mmnmn ntt ff xy ≥   (3.5) 

Since ( ) ( ),11 xy ff <  we deduce that ( ) ( ) ,11 ε−<− xy ff  for some .0>ε  

Since ( ) xx →mn  as ,+∞→m  for sufficiently large m, we have 

( ) ( ( ) ) .11 ε−<− mnff xy  

Hence, for m sufficiently large, we have 

( )( ) ( )( ( ) ) ( ) ( ( ) ) ( ( ) ( ( ) ))m
m

mmmnmn n
n

nntt PPtffff xyxyxy −+−=− 1111  
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( ( ) )m
m

n
n Pt x−ε−<  

,ε−≤  

which contradicts (3.5).   

Theorem 3.5. Let rk RR →:f  be convex and differentiable. 

Furthermore, assume that one of the following conditions holds: 

(1) K is bounded, 

(2) K is unbounded and there exists a vector D∈a  such that 

( ) .,,1,0,lim
,

rifiK
…=>−∇

∈+∞→
ayy

yy
 

Assume also that ( ) ( )n
n tS∈x  for all .N∈n  Then, the sequence ( ){ }nnx  

has at least one cluster point, and every cluster point of this sequence is a 
weak efficient solution of ( ).,MOP fD  

Proof. First note that by Lemma 3.2, we have ( ) .∅≠ntS  Therefore, 

the sequence ( ){ }nnx  stated in the theorem is well-defined. 

If K is bounded, then the sequence ( ){ } Kn
n ⊆x  is also bounded. 

Therefore, it has at least one cluster point. The claim that every cluster 
point of this sequence is a weak efficient solution of ( )f,MOP D  follows 

directly from Theorem 3.4. 

Now, assume that K is unbounded and there exists D∈a  such that 

( ) .,,1,0,lim
,

rifiK
…=>−∇

∈+∞→
ayy

yy
 

We aim to show that the sequence ( ){ }nnx  is bounded. For ,0>t  let ( )tB  

be the smallest closed ball in ,kR  centered at the origin, such that for all 

( ),tB∈/y  and for all ,,,1 ri …=  we have 

( )( ) ,0, >−∇ ayyt
if  
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or in other words,  

( ) ( ) .0,, >−∇+−∇ ayyayy Ptfi  

Since  

( ) ,0, >−∇ ayyif  

when y  is sufficiently large, and 

( ) ( ) ( )( ) ,0, ≥−≥−∇ ayayy PPtPt  

we deduce that ( )tB  has finite radius. 

Next, we show that ( ) ( ).tBtS ⊆  Indeed, suppose on the contrary that 

there exists some ( ) ( ).\ tBtS∈y  Then by definition of ( ),tB  for all 

,,,1 ri …=  we have 

( )( ) ,0, >−∇ ayyt
if  

or equivalently, 

( )( ) .,,1,0, rif t
i …=<−∇ yay  

Hence y is not a solution of ( ( ( ) ) ).,VVIP ′tK f  By Theorem 2.2, we deduce 

that ( ),tS∈/y  a contradiction. Hence ( ) ( ).tBtS ⊆  

On the other hand, for ,tt >′  we have ( ) ( ).tBtB ⊆′  Indeed, for all 

( )tB∈/y  and for all ,,,1 ri …=  we have 

( ) ( ) ,0,, >−∇+−∇ ayyayy Ptfi  

which implies  

     ( ) ( ) ,0,, >−∇′+−∇ ayyayy Ptfi   (3.6) 

as  

( ) ( ) ( ) .0, ≥−≥−∇ ayayy PPP  



PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE … 189

By definition, ( )tB ′  is the smallest ball such that for all ( ),tB ′∈/y  the 

inequality (3.6) holds for all .,,1 ri …=  Therefore, ( )tB ′  is contained in 

( ).tB  

Finally, as { }nnt  is monotonically increasing, we have 

( ) ( ) ( ) .21 "" ⊇⊇⊇⊇ ntBtBtB  

Therefore, for all ,N∈n  we have 

( ) ( ) ( ) ( ).1tBtBtS nn
n ⊆⊆∈x  

Since the radius of ( )1tB  is finite, we conclude that the sequence ( ){ }nnx  

is bounded. We complete the proof.   

Example 3.6. Let 

{ ( ) }.01,01:, 2
1212

2
21 ≤−+−≤−−∈== xxxxxxD T Rx  

 

Figure 1. The feasible region D. 
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Take P as in (3.3): 

( ) [ { }] [ { }]22
12

2
12 1,0max1,0max −+−+−−= xxxxP x  

( ) ( )
( ) ( ) ( )
( ) ( )








∈−+−
∈−+−+−−
∈−−
∈

=

.III,1
,II,11

,I,1
,,0

22
12

22
12

2
12

2
12

x
x
x
x

xx
xxxx

xx
D

 

We have 

( )

( )
( )

( )

( ) ( )
( ) ( )

( )

( )
( )

( )

















∈








−+−−
−+−

∈








−+−−−−
−+−+−−−

∈







−−
−−−

∈







=∇

.III,
12
14

,II,
1212

1412

,I,
12
12

,
0
0

2
12

2
121

2
1212

2
12112

12

12

x

x

x

x

x

xx
xxx

xxxx
xxxxx

xx
xx

D

P  

Let ( ) ( ( ) ( )),, 21 xxxf ff=  where 

( ) ,2222 2
2

21
2
2

2
1

1 2 xexxxxf x −+++=x  

( ) .12
2
2

1
2
12 1 ++−+=

xxxef xx  

Clearly, f chosen as above is convex and differentiable on .2R  Let 

,2R=K  and .0 D∈=a  Then, we have 

( ) ( ) ,2, 2
2

2
2

211 2 yeyyyf y −++=∇ yy  

( ) ,2, 11
2
2

2
12 1 yeyyyf y −++=∇ yy  

which are obviously positive when .+∞→y  Therefore, by Theorem 
3.5, any sequence of weak efficient solutions of the penalized problems 

( ( ) ) ,,2,1,,MOP …=nK ntf  has a cluster point, and every cluster point 

of that sequence is a weak efficient solution of ( ).,MOP fD  
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4. Conclusion 

We investigate the relationship between the set of weak efficient 
solutions of the original multiobjective optimization problem and the sets 
of weak efficient solutions of the corresponding penalized problems. 
Theorem 3.4 shows that every cluster point of a sequence of weak 
efficient solutions of the penalized problems is a weak efficient solution of 
the original problem, under only the continuity of f. No convexity or 
differentiability is required. However, Theorem 3.5 requires such 
properties of f. Several authors have established results on the existence 
of weak efficient solutions of a multiobjective optimization problem under 
less strict requirements imposed on f, for instance, when f is nonsmooth 
and nonconvex (see, for instance, [7, 8, 12]). Based on these results, one 
may relax the assumptions imposed on the objective function f stated in 
Theorem 3.5. 
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